Enhanced Shear Adhesion by Mechanical Interlocking of DualScaled Elastomeric Micropillars With Embedded Silica Particles

نویسندگان

  • Yudi Rahmawan
  • Seong Min Kang
  • Su Yeon Lee
  • Kahp-Yang Suh
  • Shu Yang
چکیده

Enhanced shear adhesion of mechanically interlocked dual-scaled micropillars embedded with silica particles is demonstrated. Arrays of elastomeric polyurethane acrylate micropillars with variable pillar diameter, height, aspect ratio (AR1⁄4diameter/height), and spacing ratio (SR1⁄4pillar-to-pillar distance/diameter) are decorated with silica particles of 100nm to 1mm on the pillar heads. The high-density protrusions provided by a silica particle assembly (1mm diameter) on themicropillar heads (5mmdiameter, AR1⁄4 8, SR1⁄4 2) increase the shear adhesion strength by an order of magnitude from 4.1 (between pristinemicropillars) to 48.5N cm . The adhesion strength is proportional to the particle size and the AR of micropillars, and inversely proportional to the SR. A simple mathematical model is derived by incorporating the interdigitation state of interlocking adhesion forces generated by the contacts between pillars and particle protrusions. Our model and SEM images also suggest that only 20% of micropillars participate in the actual contact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates

The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...

متن کامل

Experimental study of applying colloidal nano Silica in improving sand-silt mixtures

Passive method is a new procedure in stabilizing loose soils. This methodology is a type of interlocking soil particles structures. In order to optimum improve in this method, it is necessary to achieve proper penetration length and increase the shear strength of parameters. Researches have shown an increased resistance to liquefaction and decreased permeability due to colloidal Nano silica inj...

متن کامل

Experimental study of applying colloidal nano Silica in improving sand-silt mixtures

Passive method is a new procedure in stabilizing loose soils. This methodology is a type of interlocking soil particles structures. In order to optimum improve in this method, it is necessary to achieve proper penetration length and increase the shear strength of parameters. Researches have shown an increased resistance to liquefaction and decreased permeability due to colloidal Nano silica inj...

متن کامل

Synthesis and mechanical response of disordered colloidal micropillars.

We present a new approach for studying the uniaxial compressive behavior of colloidal micropillars as a function of the initial defect population, pillar and colloid dimension, and particle-particle interaction. Pillars composed of nanometer scale particles develop cracks during drying, while pillars composed of micron scale particles dry crack-free. We subject the free-standing pillars, with d...

متن کامل

Tilted Janus polymer pillars †

Asymmetric adhesion is used by many insects and gecko lizards, allowing them to move on nearly any surface – horizontal, tilted or vertical. The feet of many of these creatures is covered with intricate fibrillar structures that are responsible for their superb manoeuvring ability. Among these creatures, gecko lizards have one of the most efficient and interesting adhesion devices consisting of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013